from manim import *
class IntegralDefinida(Scene):
def construct(self):
# Fila 1
eq1 = MathTex(r"\int_2^3 (x^3 - 5x + 4)\, dx").scale(0.5)
eq1.to_edge(UP + LEFT)
self.play(Write(eq1))
self.wait()
eq2 = MathTex(r"= \left[ \frac{x^4}{4} - \frac{5x^2}{2} + 4x \right]_2^3").scale(0.5)
eq2.next_to(eq1, RIGHT, buff=1)
self.play(Write(eq2))
self.wait()
# Fila 2
eq3 = MathTex(
r"= \left(",
r"\frac{3^4}{4} - \frac{5 \cdot 3^2}{2} + 4 \cdot 3",
r"\right)",
r"- \left(",
r"\frac{2^4}{4} - \frac{5 \cdot 2^2}{2} + 4 \cdot 2",
r"\right)"
).scale(0.5)
eq3.next_to(eq1, DOWN, buff=0.8).to_edge(LEFT)
self.play(Write(eq3))
self.wait()
eq4 = MathTex(
r"= \left(",
r"\frac{81}{4} - \frac{45}{2} + 12",
r"\right)",
r"- \left(",
r"\frac{16}{4} - \frac{20}{2} + 8",
r"\right)"
).scale(0.5)
eq4.next_to(eq3, RIGHT, buff=1)
self.play(Write(eq4))
self.wait()
# Fila 3
eq5 = MathTex(
r"= \left(",
r"\frac{81}{4} - \frac{90}{4} + \frac{48}{4}",
r"\right)",
r"- \left(",
r"\frac{16}{4} - \frac{40}{4} + \frac{32}{4}",
r"\right)"
).scale(0.5)
eq5.next_to(eq3, DOWN, buff=0.8).to_edge(LEFT)
self.play(Write(eq5))
self.wait()
eq6 = MathTex(
r"= \left(",
r"\frac{81 - 90 + 48}{4}",
r"\right)",
r"- \left(",
r"\frac{16 - 40 + 32}{4}",
r"\right)"
).scale(0.5)
eq6.next_to(eq5, RIGHT, buff=1)
self.play(Write(eq6))
self.wait()
# Fila 4
eq7 = MathTex(
r"= \left(",
r"\frac{39}{4}",
r"\right)",
r"- \left(",
r"\frac{8}{4}",
r"\right)"
).scale(0.5)
eq7.next_to(eq5, DOWN, buff=0.8).to_edge(LEFT)
self.play(Write(eq7))
self.wait()
eq8 = MathTex(
r"= \frac{39}{4} - 2"
).scale(0.5)
eq8.next_to(eq7, RIGHT, buff=1)
self.play(Write(eq8))
self.wait()
# Fila 5
eq9 = MathTex(
r"= \frac{39 - 8}{4}"
).scale(0.5)
eq9.next_to(eq7, DOWN, buff=0.8).to_edge(LEFT)
self.play(Write(eq9))
self.wait()
eq10 = MathTex(
r"= \frac{31}{4}"
).scale(0.5)
eq10.next_to(eq9, RIGHT, buff=1)
self.play(Write(eq10))
self.wait()